Immobilization of glycosylphosphatidylinositol-anchored proteins inhibits T cell growth but not function.

نویسندگان

  • M D Marmor
  • M F Bachmann
  • P S Ohashi
  • T R Malek
  • M Julius
چکیده

Accumulating evidence suggests that proteins tethered to the plasma membrane through glycosylphosphatidylinositol (GPI) anchors share common biological properties. In the present study we demonstrate that GPI-anchored proteins regulate T cell growth. Specifically, anti-TCR-induced proliferation was profoundly inhibited by co-immobilized mAb specific for Thy-1, CD48 and Ly6A/E. However, neither IL-2 production nor the effector function of cytotoxic T lymphocytes was impaired in these circumstances. Analysis of the IL-2 receptor (IL-2R) signaling pathway revealed that the association of IL-2R beta and gamma chains with the Janus kinases, JAK1 and JAK3, was not perturbed in the presence of mAb specific for GPI-linked proteins. However, in these conditions, IL-2-mediated recruitment of IL-2Ralpha, beta and gamma chains, resulting in the formation of the high-affinity hetero-trimeric IL-2R, was inhibited. The resulting phosphorylation of JAK1 and JAK3, indicative of their activation states, was correspondingly reduced. These results characterize a novel state of T cell physiology in which effector function is maintained, in the absence of clonal expansion. A physiological role for GPI-anchored proteins in the maintenance of cellular homeostasis and function is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa.

Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway,...

متن کامل

Direct evidence of involvement of glycosylphosphatidylinositol-anchored proteins in the heavy metal-mediated signal delivery into T lymphocytes.

The biological significance of the action of glycosylphosphatidylinositol (GPI)-anchored proteins in cell physiology and pathology when stimulated with their natural agonists is not known. Here we provide evidence that GPI-anchored proteins play a crucial role in the recently defined heavy metal (HgCl2)-triggered signal delivery to T lymphocytes. Thiol-reactive HgCl2, a multi-potent crosslinker...

متن کامل

Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation.

In spermatozoa, as in other eukaryotic cells, integral membrane proteins may be anchored by a hydrophobic protein domain, or by a glycosylphosphatidylinositol (GPI) lipid anchor. Contrary to the current understanding of sperm membrane biogenesis, recent evidence shows that some of the GPI-anchored proteins are not synthesized by the spermatozoa themselves, but by cells of the male genital tract...

متن کامل

Leishmania mexicana mutants lacking glycosylphosphatidylinositol (GPI):protein transamidase provide insights into the biosynthesis and functions of GPI-anchored proteins.

The major surface proteins of the parasitic protozoon Leishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (DeltaGPI8) do n...

متن کامل

Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells.

Glycosylphosphatidylinositol (GPI)-anchored proteins are poorly solublized in non-ionic detergents such as Triton X-100 and Nonidet P40, but are easily solublized by detergents with high critical micelle concentrations such as octylglucoside. This solubility profile has been suggested to be due to the localization of GPI-anchored proteins to lipid microdomains rich in cholesterol and sphingolip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International immunology

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 1999